Preliminary communication

Ligand exchange in some π -allylic tris(trifluorophosphine)rhodium(I) complexes

D.A. CLEMENT, J.F. NIXON^{*} and B. WILKINS

School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ Sussex (Great Britain) (Received February 14th, 1972)

We have recently synthesised¹ several volatile, liquid, π -allylic tris(trifluorophosphine)rhodium(I) complexes (see Scheme 1) by either (i) insertion of allene or conjugated dienes into the metal—hydrogen bond of HRh(PF₃)₄, [for (I), (II), and (III)], or (ii) displacement of two π -allyl groups from tris(π -allyl)rhodium(III) with trifluorophosphine [for (I)]. In (i) exactly one PF₃ ligand was displaced from the hydride in each case.

Scheme 1.

* Author to whom correspondence should be addressed.

J. Organometal. Chem., 37 (1972)

The room temperature ¹⁹F NMR spectrum of a toluene solution of (I) consists of a broad 1/1 doublet [φ_F 8.1 ppm (rel. CCl₃F) ¹J(PF) 1396 Hz] characteristic of PF₃ coordinated to a transition metal². There was no observable coupling to the ¹⁰³Rh nucleus (100% abundance; *I* ½).

On cooling the solution to -50° the ¹⁹F NMR spectrum of (I) exhibits a complex pattern of lines (Fig. 1), which has been fully analysed³ as an $[X_3A]_3$ spin system⁴ (X = fluorine, A = phosphorus), each line being split further into a 1/1 doublet by the ¹⁰³Rh nucleus (²J(RhF) 18.0 Hz).

Fig. 1. High field half of the ¹⁹F NMR spectrum (at 94.1 MHz) of Rh(π -C₃H₅)(PF₃)₃ in toluene at 50°

The ¹H NMR spectrum of (I) at room temperature (Fig. 2a) is characteristic of a π -allyl complex showing the expected three resonances for the unique proton H^C, and the syn, H^B, and anti, H^A pairs of protons. Only H^C is coupled significantly to the ¹⁰³Rh nucleus and the resonance consists of symmetric 16 line pattern of relative intensity 1/1/2/2/3/1/4/4/1/3/2/2/2/1/1 which arises from the overlap of a doublet (²J(RhH^C) 1.8 Hz) of triplets (³J(H^CH^A) 10.2 Hz) of triplets (³J(H^CH^B) 6.1 Hz).

On cooling a solution of (I) to -50° the H^B resonance remains unaffected, but the H^C signal broadens and the H^A resonance changes to a symmetric six line pattern of relative intensities 1/3/4/4/3/1 (Fig. 2b). The latter arises from overlap of two 1/3/3/1quartets from spin coupling between H^A and H^C and three equivalent phosphorus atoms (³J(PH^A) 4.6 Hz). The changes in both ¹H and ¹⁹F NMR spectra are reversible, and indicate that there is a ready exchange between free and coordinated PF₃ in π -C₃H₅Rh(PF₃)₃. Heck⁵ has proposed a dissociative mechanism in substitution reactions of the analogous π -allylCo(CO)₃ compound. Compounds (II) and (III) also show similar J. Organometal. Chem., 37 (1972)

Fig. 2. The ¹H NMR spectrum (at 100 MHz) of Rh(π -C₃H₅)(PF₃)₃ in CCl₃F solution (a) at ambient temperature; (b) at -50°

behaviour to (I) and the ¹⁹F NMR spectrum of (II) indicates the presence of syn and anti isomers which both undergo phosphine exchange but are not interconverted at room temperature. The apparent magnetic equivalence of all three PF₃ ligands at -50° in (I), (II) and (III) is probably due to an intramolecular exchange process if the metal is considered 5-coordinate. Fluxional behaviour is known for CF₃Co(CO)₃(PF₃)⁶, butadiene Fe(PF₃)₃⁷, and HRh(PF₃)₄⁸ and Rice and Osborn⁹ recently found that inter- and intramolecular exchange processes operate independently in CH₃Rh(diehe)L₂.

Although analytical data for (I) (Found: C, 9.0; H, 1.3; P, 22.9. $C_3H_5Rh(PF_3)_3$ calcd.: C, 8.8; H, 1.2; P, 22.8%.) confirms the presence of three PF₃ ligands in the complex, the highest mass peak observed in the mass spectrum is at m/e.320 corresponding to the $C_3H_5Rh(PF_3)_2^+$ ion.

O'Brien¹⁰ has formulated the monomeric product from the reaction of allylmagnesium chloride and [RhCl(CO)₂]₂ as the di-carbonyl complex, π -C₃H₅Rh(CO)₂, (IV) partly on the basis of the observation of Rh(CO)₂C₃H₅⁺ as the highest molecular ion in the mass spectrum. A di-carbonyl complex is unexpected in view of the close similarity in coordinating ability of PF₃ and CO², furthermore, (IV) is also readily obtained from the room temperature reaction between π -(C₃H₅)₃Rh and CO^{11, 12}. Studies are underway to clarify the nature of compound (IV).

J. Organometal. Chem., 37 (1972)

REFERENCES

- 1 D.A. Clement, J.F. Nixon and B. Wilkins, unpublished results.
- 2 J.F. Nixon, Advan. Inorg. Chem. Radiochem., 13 (1970) 363, and references therein.
- 3 J.F. Nixon, in preparation.
- 4 E.G. Finer and R.K. Harris, J. Chem. Soc. A, (1969) 1972.
 5 R.F. Heck, J. Amer. Chem. Soc., 85 (1963) 655.
- 6 C.A. Udovich and R.J. Clark, J. Amer. Chem. Soc., 91 (1969) 526.
- 7 J.D. Warren and R.J. Clark, Inorg. Chem., 9 (1970) 373.
- 8 P. Meakin, J.F. Jesson, F.N. Tebbe and E.L. Muetterties, J. Amer. Chem. Soc., 93 (1971) 1797.
- 9 D.P. Rice and J.A. Osborn, J. Organometal. Chem., 30 (1971) C84.
- 10 S. O'Brien, Chem. Commun., (1968) 757.
- 11 J. Powell and B.L. Shaw, J. Chem. Soc. A, (1968) 583.
- 12 R.E. Humphries and J.F. Nixon, unpublished results.
- J. Organometal. Chem., 37 (1972)